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High-energy limit versus infinite-mass limit in the 
Coulomb problem 
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Institut fur Theoretische Physik der Universitat Tiibingen, Fed. Rep. of Germany 

Received 17 June 1974 

Abstract. Relativistic eikonal physics is applied to Coulomb scattering and bound states. 
I t  is shown that the eikonal approximation can accommodate the impact factor result as well 
as the non-relativistic Balmer spectrum. It is argued that relativistic corrections are outside 
this realm of approximation. This will be confirmed by eikonalizing the high-energy scattering 
amplitude of an electron in a static Coulomb field which is generated by a proton. 

1. Introduction 

Some time ago the classical one-particle Dirac equation was re-examined within the 
context of the relativistic eikonal approximation (Dittrich 1970). It was shown that the 
poles of a semi-eikonalized two-body scattering amplitude coincide with the well-known 
relativistic Balmer spectrum. The evaluation made substantial use of an infinite-mass 
limiting process. Beyond that equivalence proof nobody seems to have succeeded in 
constructing the relativistic Balmer formula in an absolutely convincing manner 
(Brezin et al1970, Frondsal 1967, Nambu 1967, Todorov 1971). The computation of the 
poles of the totally eikonalized crossed ladder graphs of electrodynamics always yields 
instead the non-relativistic counterpart and it is hard to see how relativistic corrections of 
E ,  which depend on both n and 1 (or j )  could be directly derived within the eikonal 
approximation. It is, however, interesting to observe that the eikonal approach can 
reproduce Cheng and Wu’s (1969a, also Chang and Ma 1969) impact factor result and at 
the same time allows for the non-relativistic bound state formula, that is, reveals a pole 
structure in a totally eikonalized scattering matrix, whose realm of validity is supposed 
to be s + CO, not s below the threshold in the bound state region. In fact, this non-relati- 
vistic feature is also shared by other approaches to  high-energy scattering in quantum 
electrodynamics, eg, as expressed by the infinite-momentum results in the work of Kogut 
and Soper (1970). Their choice ofnew time and space variables (7, z )  drew attention to the 
two-dimensional Galilean group of non-relativistic quantum mechanics in two dimen- 
sions, which led to a non-relativistic structure for quantum mechanics in the infinite- 
momentum frame. We consider it therefore not merely an accident that the eikonal 
approach, or the infinite-momentum frame for that matter, is also reflected in the bound 
state realm of QED, where only the classical Balmer spectrum is projected out of the 
complex pole structure of the electron’s Green’s function in presence of a Coulomb 
potential. 

In order to present our procedure, let us first recall some ideas and results of Dittrich 
(1970). Thereafter we will give an easy proof of the impact factor representation for 
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high-energy Coulomb scattering. These results are shown to appear in the lowest-order 
expansion of the closed-form expression for the eikonalized scattering amplitude of an 
electron in the static Coulomb field. 

2. Dirac equation and subclass of Feynman diagrams 

In order to investigate the two-particle reaction (figure l), p1 + p z  -, p ;  + p i ,  we start out 
with the following qualifications: let the top line (1) represent a fermion (electron) and 
the bottom line (2) a heavy scalar particle (nucleus) which can form bound states. 
Furthermore, the coordinate system is chosen so that the electron is moving in the z 
direction. 

Figure 1. Multiphotqn exchange process 

Following the standard LSZ reduction techniques (Fried 1972), the corresponding 
S-matrix element may be written in the form 

and the electron's Green's function is defined by 

[y"( ia , -eA, ) -m]G(x; ,x , lA)  = S4(x;-x1). (2.3) 

A,(x) represents the external c-number field which is generated by the heavy scalar 
nucleus. The q, i j  denote artificial anticommuting c-number sources and the free Dirac 
operator gX is conventionally defined via 

(iy ax - m)Sdx - y) : = aXs,(x - y) = d4(x - y). 

Equation (2.1) can be further reduced to 

(Pi > P;lSIPl? PZ) 
1 m2 

(2n)3 E(P1 )m;) = -- ( ) 1'2 d4x1 d4x; exp[i(p,x; -plxl)] 
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The object of interest is therefore 

P ;  = p 2 + 4 :  (P2+41T(Jl(x;)$(Xl))IP2) 

and A is fixed by ( p 2  +A)2 = mg. 
We intend to  employ the eikonal approximation for the scalar particle which means 

that the matrix element ( p 2  + qJT(t,b(x;)$(xl))Jp2) can be further reduced. Omitting 
radiative corrections also on the scalar particle, the contribution of the latter to the S- 
matrix is then stated by 

x q - i  A(X;,X21A))Kx2. 

The Klein-Gordon operator K ,  satisfies the Green’s function equation 

(a2 + M 2 )  AAx) = K ,  AJx) = - 6 ” ( ~ )  

which, in presence of an external potential A,(x), turns into 

[(i a,, - eAJ2  - M2] A(x, ylA) = d4(x - y) .  

Connection of the electron and scalar particle via photon exchange yields the complete 
S-matrix element : 

Using the ‘linkage formula’ (Fried 1972), ie, 

exp - -D - G[A] b [ A ]  ( f :A ‘:A) 
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and restricting ourselves to undressed particles, we are now in a position to compute 

In this subsection we are mainly interested in a closed-form solution of the Green's 
function equation for the scalar particle. This solution can be located, eg, in Dittrich 
(1970). There we found for the amputated eikonalized propagator 

A d i % ,  P2lA) 

= 2Mi d4x exp[i(p; -p2)x] i 
ds'2ep:A,(x-p2/Ms') 

If we then compare equations (2.4) and (2 .6)  we are led to 

(Pi1 w(x; )$(x  1))IP2) 

1 
- -'[ (27d3 24P2)24P;) 1'" 

Substituting formula (2.8) in (2.9) yields, after some lines of calculation, 

( P 2  +q17-(+(x;)$(x,))lP,) 

x (27r)S(')(k, - kb) exp[ - ikL- '(xi - z)] exp[ik'L- '(xl - z)]  

(2.8) 

(2.10) 

where the Lorentz boost Lpv is defined by Lgv(p2/M)u,. = p:/M and U, is purely time-like, 
ie, U, = cl,@. Equation (2.10) can now be solved with respect to G(A). The result is 
stated in the following expression (Dittrich 1970) : 

X UGcod(L- ')oV(A-q)"; (L-'),,,,iA--qY, (L- l),,,, Av]U. 
The quantity of interest, the shifted Coulomb energy A,, is then computed and gives the 
remarkably simple relation 

1 
A0 = (L-')Ov(A-q)' = -(poAo- Pf M 2  
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Using this relation in ( A ' + P ~ ) ~  = m i  we obtain mB = M+Ab = M-E, where Ab 
now coincides with the relativistic binding energy of the electron in a Coulomb field. 
However, it is essential to assume M + CO. Therefore not an infinite momentum- 
limiting process p L  -, 00 (or s + CO)  is the adequate method to generate the relativistic 
Balmer spectrum, but a simple assumption for the particle in which the electron travels 
must be made : it just has to be heavy. 

3. Impact factor representation in high-energy Coulomb scattering 

Equation (2.1) sets the stage for computing the various Feynman graphs for electron 
scattering by an external potential. To  second order in e one finds 

Expression (3.1) was exactly calculated by Dalitz (195 1) for the static Coulomb potential, 
where 

It is convenient to rewrite (3.1) in the following variables: 

p;-p1 = k, p;+p1 = 2P 
or 

k 
p1 = p - - .  

2 
k 

p ;  = P + Z ,  

On the mass shell we have p 2  + ( k / 2 ) 2  = m2, pk = 0. In terms of these variables the 
second-order process (figure 2) leads to 

where M is defined by 

(27~)6(E, - Ei) static case, 

( 2 ~ ) ~ S ~ ( p ,  - p i )  otherwise. 
Sfi = - i(kin. factors)Mfi 

P,'P-klZ p+q p ;=p+k l2  

Figure 2. Second-order Coulomb process 
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The complicated integral (3.2) can be easily calculated in the high-energy limit 
w - lpll -+ CO, where w = (p: +m2)lI2 and k fixed ( t  = k 2 ) .  One can then prove that the 
momentum transfer k has only transverse components lying in the (x, y) plane if the 
incident beam is along the z axis. It is also straightforward to show that the spin- 
dependent part of equation (3.2) contributes 

Hence we obtain ($ko = 0 = qo) 

1 + 
( p  + q)2 - m2 + ic ( p  - ql2 - m2 + ic 

Utilizing qo = 0 and 

we have in the high-energy limit 

1 1 71 + ) = -iw6(q3). [ ( p + q ) 2  - m2 +ic ( p -  ql2 - m 2  +ic 1-1 - 2wq3 + ic 2wq3 + ic 
1 + 

Finally we obtain 

which means that the electron interacts with the Coulomb field through interchanging 
purely transverse momenta. Equation (3.5) can be cast into a form known as impact 
factor representation (Cheng and Wu 196923) for forward scattering of an electron in the 
static field of the Coulomb potential : 

(3.6) 

where 9‘ and YN are the ‘impact factors’ for the electron and the nucleus, respectively : 
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M is the mass of the static nucleus and o is the energy of the electron in the laboratory 
frame. At this stage one would wish to push the calculation beyond equation (3.6). 
However, it is a rather hopeless task to try to compute the nth-order amplitude by 
proceeding the same way which led us to (3.6). However, a way out of this difficulty 
will be provided in the next section, where we will eikonalize both the electron and the 
proton line, which can be thought of as the generator of the Coulomb potential. 

4. Eikonalization of electron-nucleus (proton) scattering 

The foregoing calculation is instructive in that it provides us with a first non-trivial 
information in understanding the mechanism of high-energy electron-nucleus scattering. 
On the other hand we will show that formula (3.6) is nothing but a low-order term in the 
expansion of a Glauber-type eikonal formula, which we now want to exhibit. 

The idea is to approximate both top and bottom line of figure 1 by their eikonal 
propagators. Those propagators were derived and used in the past by several authors 
(Abarbaneland Itzykson 1969, Dittrich 1972). Here it suffices to recall that the amputated 
electron’s Green’s function is given by 

= i d4x exp[i(p; - p&] - exp - ie ds‘-A, x - - - S I  {is [ . s1, : ( f ) ] } s = O  (4.1) 

while the corresponding scalar particle line is approximated by AEik[A] as expressed in 
equation (2.8). Recalling the matrix element (2.6) which takes into account all ladder- 
type photon-exchange process, we observe that the quantity of interest is 

i(274464(P; + p ;  - P1 - p,)M(s, t )  

The resulting equation for M(s, t )  is therefore 

M(s ,  t )  = 2Mid,,,; d45 exp[ -p1)5] 1 
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Equation (4.2) is most conveniently computed in the CM system where p1 + p 2  = 0. 
I fp,  is taken in the z direction, lpll = p z .  we have 

s-m2-M2 
P:+P; = Js, P1P2 = 

and 

1 
lpll = - [ ~ - ( m + M ) ~ ] ~ ~ ~ [ s - - ( m - M ) ~ ] ~ ~ ~ .  

2 J s  
A decomposition of 4” in 

where 5; has nonvanishing components only in the xy plane, yields 
+ m  

mM 

x (K a a  %exp{ - i e , e 2 @ r 1  ds; ds; mM -E 

111 s i = s 2 = 0  

x D ~ [  - 5; -$(el +si)+=( P; - < 2  +si) 

A change of variables then implies the following form for M(s, t )  : 

M(s, t )  = 2Mi6,,,;-/p1I d 2 t r  exp(ik,. Sr) s d 5 l s  d52 
(P?  + P 3  

mM 

x{%&exp[ a a  -ie1e2@S(’ dn lSf :do2  
mM - m  

x DF( -5+-01-+02a)]} P’; = 2MidAlAi-----lp1/ (P? + €4) / d2S ,  m M  mM 

Employing the Fourier transform of DF(x), ie, 

we need to compute 

iJd4k/d~1 S d r 2  exp(ik,<;+ik,p~t,-ik,p;s,) 1 

(2744 - k2 + p 2  - i c  
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The resulting equation for the scattering amplitude is therefore 

where 

s-m2-M2 
2 1 1 2 '  [s - (m  + M)2]"2[s-(m- M) ] t = -Ik T 12 and 'iw = (4.5) 

Equation (4.4) contains both the impact factor result for electron nucleus scattering 
(s + 00, t fixed) and at the same time has in it all the information necessary to discuss 
bound state problems (M + a). For a static nucleus there is no factor 2M in front of 
equation (4.4). Furthermore, in the limit s + CO, y (s )  -+ 1 ; therefore 

d26, exp(ik, . 6,) exp -ie e - - K 0 ( p ( , )  - 1 
m { [ 22n 1 1  

where s = 2 M 0  and w denotes the electron energy with respect to the rest frame of the 
nucleus. Considered for e, = e, e, = - Ze, equation (4.6) turns into 

d2c, exp(ik,. 6,) - 1 (4.7) 
m 1 1  

which, when expanded in Ze2 yields in lowest order 

and 

Here we recognize the former impact factor result (3.6). 
In QED we have to take the limit p + 0 in equation (4.7). For p + 0 with k ,  fixed at a 

nonzero value, the - 1 term in (4.7) does not contribute. The remaining integral of 
interest is then given by 

I = d25, exp(ik,. 6,) exp s 
Using the representation 

and the asymptotic form 

Z 2  
K ~ ( Z )  = - (In( 4) +?) (1  sq+ . . .) + 
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we obtain (with the aid of Bateman's Tables of Integral Transforms, vol. 2), 

p-2izz is the infinite phase shift associated with the Coulomb field. When the cross section 
is computed it drops out. The factorization property of the right-hand-side of equation 
(4.8) is of some significance itself. The conjecture of Dalitz (1951), which states that the 
divergence, as p -, 0, can be factored out by a single phase factor, has been proved here 
to all orders in (Za). This important result of eikonal physics seems to have been over- 
looked in the vast literature on the subject. 

Going back to formula (4.4), we find bound states, since the resulting Regge-like 
amplitude exhibits poles when s is continued below threshold (M +m)2. Like before, it is 
now straightforward to show that 

- iZe2/(2n)y(s) 

1 Iv (2=)(!) 1: d(T~~-iZe2/!2n)y(s)J o ( k  T T  5 ) 

which shows Regge behaviour with trajectory function -y(s) .  The same ratio of r 
functions appears in the exact solution of the Coulomb scattering problem. Hence the 
eikonalized scattering amplitude (4.4) displays poles whenever 

iZcry(s) = n, n 2 l  (4.9) 
which, upon inserting y(s)  of equation ( 4 3 ,  yields 

m 
s, = m2+M2+2M 

If we take M + CO and define E,  = Js ,  - M, we find 

1 m 
E ,  = lim -(s,-M2) = 

M - + W  2M 

(4.10) 

(4.11) 

Evidently, this formula yields the non-relativistic (Bohr) levels. 
One might wonder about the occurrence of the familiar pole-structure (4.1 1). After 

all, the eikonal method was rediscovered to investigate scattering amplitudes for large s 
(see Cheng and Wu 1969b, Abarbanel and Itzykson 1969). This is, however, not the only 
realm where eikonal methods have proved to be useful. This is due to the fact that the 
eikonal approximation, or in this context also known as Bloch-Nordsieck approxima- 
tion, means first of all the replacement of the quantized radiation field of the exchanged 
photon by a classical c-number source. It is exactly this soft-photon replacement that 
went into the derivation of equation (4.4) and which in the sequel was discussed for the 
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two limiting processes s + 00 and M -, 00. For the appearance of bound states in the 
latter case we can present the following heuristic argument. The generation of bound 
states within a scattering problem is a non-perturbative problem which involves the 
summation of an infinite number of ladder and crossed-ladder type graphs. Having 
derived formula (4.1 1) one can now conclude that the main contribution to binding 
arises from the low-frequency spectrum of the potential generated by the heavier of the 
two particles (large mass M ) ,  ie, the long-wavelength part dominates this region of 
energy. Precisely these classical modes have been summed up in the eikonal approxima- 
tion, and hence we expect to end up in the low-energy region. Surprising seems to be the 
fact that the exact Balmer spectrum emerges. 

This result does not depend on the nature of the travelling particles under discussion, 
ie, we obtain the same bound state formula for scalar and spin 3 carrying particles. This 
unpleasant feature, however, reflects the true realm of validity of eikonal physics. There 
is no consistent way to incorporate spin-dependent corrections which inay yield the 
exact relativistic bound state spectrum as derived in section 2 where we just eikonalized 
the proton line while keeping the electron’s Green’s function in its exact form. 

5. Conclusion 

The main goal of this article was to investigate the consequences of two different limiting 
processes in the Coulomb problem ; the high-energy limit (impact factor representation) 
and the infinite mass limit (energy spectrum). We have shown that the eikonal approxi- 
mation can accommodate both the impact factor result and the Balmer spectrum. 
Interestingly enough, the eikonal approximation also yields a simple and compact answer 
to Dalitz’s old problem concerning the divergence of the long-range Coulomb potential : 
not only to second order but to all orders in Za can the divergence be summarized in a 
single phase factor. 
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